Browser AI Performance Optimization
Browser AI Performance Optimization
Section titled “Browser AI Performance Optimization”This guide provides comprehensive strategies for optimizing AI workflow performance in browser environments, covering everything from memory management to network optimization and user experience enhancements.
Performance Optimization Framework
Section titled “Performance Optimization Framework”Performance Monitoring and Metrics
Section titled “Performance Monitoring and Metrics”Implement comprehensive performance monitoring for AI workflows:
// AI Performance Monitorclass AIPerformanceMonitor { constructor() { this.metrics = new Map(); this.thresholds = { responseTime: 3000, // 3 seconds memoryUsage: 0.8, // 80% of available memory errorRate: 0.05, // 5% error rate cacheHitRate: 0.7 // 70% cache hit rate }; this.alerts = new Set(); }
async startMonitoring() { // Monitor response times this.monitorResponseTimes();
// Monitor memory usage this.monitorMemoryUsage();
// Monitor error rates this.monitorErrorRates();
// Monitor cache performance this.monitorCachePerformance();
// Generate performance reports setInterval(() => this.generatePerformanceReport(), 60000); // Every minute }
async measureAIOperation(operationName, operation) { const startTime = performance.now(); const startMemory = await this.getCurrentMemoryUsage();
try { const result = await operation();
const endTime = performance.now(); const endMemory = await this.getCurrentMemoryUsage();
this.recordMetric(operationName, { duration: endTime - startTime, memoryDelta: endMemory.used - startMemory.used, success: true, timestamp: Date.now() });
return result; } catch (error) { const endTime = performance.now();
this.recordMetric(operationName, { duration: endTime - startTime, success: false, error: error.message, timestamp: Date.now() });
throw error; } }
recordMetric(operation, metric) { if (!this.metrics.has(operation)) { this.metrics.set(operation, []); }
const operationMetrics = this.metrics.get(operation); operationMetrics.push(metric);
// Keep only recent metrics (last 100 operations) if (operationMetrics.length > 100) { operationMetrics.shift(); }
// Check for performance issues this.checkPerformanceThresholds(operation, metric); }
checkPerformanceThresholds(operation, metric) { if (metric.duration > this.thresholds.responseTime) { this.triggerAlert('slow_response', { operation: operation, duration: metric.duration, threshold: this.thresholds.responseTime }); }
if (metric.memoryDelta > 50 * 1024 * 1024) { // 50MB increase this.triggerAlert('high_memory_usage', { operation: operation, memoryDelta: metric.memoryDelta }); } }
async generatePerformanceReport() { const report = { timestamp: Date.now(), operations: {}, summary: { totalOperations: 0, averageResponseTime: 0, errorRate: 0, memoryEfficiency: 0 } };
for (const [operation, metrics] of this.metrics.entries()) { const recentMetrics = metrics.slice(-20); // Last 20 operations
report.operations[operation] = { count: recentMetrics.length, averageTime: this.calculateAverage(recentMetrics, 'duration'), successRate: recentMetrics.filter(m => m.success).length / recentMetrics.length, memoryUsage: this.calculateAverage(recentMetrics, 'memoryDelta') };
report.summary.totalOperations += recentMetrics.length; }
// Calculate summary metrics const allMetrics = Array.from(this.metrics.values()).flat(); report.summary.averageResponseTime = this.calculateAverage(allMetrics, 'duration'); report.summary.errorRate = 1 - (allMetrics.filter(m => m.success).length / allMetrics.length);
return report; }}Intelligent Caching Strategies
Section titled “Intelligent Caching Strategies”Implement multi-layer caching for optimal performance:
// Multi-layer AI caching systemclass IntelligentAICache { constructor() { this.memoryCache = new Map(); this.persistentCache = null; this.compressionEnabled = true; this.cacheStrategies = new Map();
this.initializePersistentCache(); }
async initializePersistentCache() { try { // Use IndexedDB for persistent caching this.persistentCache = await this.openIndexedDB(); } catch (error) { console.warn('Persistent cache unavailable, using memory only'); } }
async get(key, options = {}) { // Try memory cache first (fastest) const memoryResult = this.memoryCache.get(key); if (memoryResult && this.isValid(memoryResult, options)) { this.updateAccessTime(memoryResult); return this.deserialize(memoryResult.data); }
// Try persistent cache if (this.persistentCache) { const persistentResult = await this.getFromPersistentCache(key); if (persistentResult && this.isValid(persistentResult, options)) { // Promote to memory cache this.memoryCache.set(key, persistentResult); return this.deserialize(persistentResult.data); } }
return null; }
async set(key, data, options = {}) { const cacheEntry = { data: await this.serialize(data), timestamp: Date.now(), lastAccessed: Date.now(), ttl: options.ttl || 3600000, // 1 hour default size: this.calculateSize(data), metadata: options.metadata || {} };
// Store in memory cache this.memoryCache.set(key, cacheEntry);
// Store in persistent cache if available and data is cacheable if (this.persistentCache && this.shouldPersist(cacheEntry, options)) { await this.setInPersistentCache(key, cacheEntry); }
// Manage cache size await this.manageCacheSize(); }
async serialize(data) { if (!this.compressionEnabled) { return JSON.stringify(data); }
try { const jsonString = JSON.stringify(data);
// Use compression for large data if (jsonString.length > 1024) { return await this.compress(jsonString); }
return jsonString; } catch (error) { console.warn('Serialization failed:', error); return JSON.stringify(data); } }
async compress(data) { if ('CompressionStream' in window) { const stream = new CompressionStream('gzip'); const writer = stream.writable.getWriter(); const reader = stream.readable.getReader();
writer.write(new TextEncoder().encode(data)); writer.close();
const chunks = []; let done = false;
while (!done) { const { value, done: readerDone } = await reader.read(); done = readerDone; if (value) chunks.push(value); }
return { compressed: true, data: new Uint8Array(chunks.reduce((acc, chunk) => [...acc, ...chunk], [])) }; }
// Fallback: simple string compression return { compressed: false, data: data }; }
// Intelligent cache invalidation async invalidateRelated(key, pattern) { const keysToInvalidate = [];
// Find related keys in memory cache for (const cacheKey of this.memoryCache.keys()) { if (this.matchesPattern(cacheKey, pattern)) { keysToInvalidate.push(cacheKey); } }
// Invalidate found keys for (const keyToInvalidate of keysToInvalidate) { this.memoryCache.delete(keyToInvalidate);
if (this.persistentCache) { await this.removeFromPersistentCache(keyToInvalidate); } }
return keysToInvalidate.length; }
// Predictive caching based on usage patterns async predictiveCache(userContext, recentOperations) { const predictions = await this.analyzeCachingPatterns(userContext, recentOperations);
for (const prediction of predictions) { if (prediction.confidence > 0.7) { // Pre-cache likely needed data await this.preCacheData(prediction.key, prediction.generator); } } }
async analyzeCachingPatterns(userContext, recentOperations) { // Analyze user behavior patterns const patterns = [];
// Sequential access patterns const sequentialPatterns = this.detectSequentialPatterns(recentOperations); patterns.push(...sequentialPatterns);
// Time-based patterns const timePatterns = this.detectTimeBasedPatterns(recentOperations); patterns.push(...timePatterns);
// Context-based patterns const contextPatterns = this.detectContextPatterns(userContext, recentOperations); patterns.push(...contextPatterns);
return patterns; }}Streaming and Progressive Loading
Section titled “Streaming and Progressive Loading”Implement streaming for better perceived performance:
// Advanced streaming AI processorclass StreamingAIProcessor { constructor() { this.streamingStrategies = new Map(); this.progressiveLoaders = new Map(); this.bufferManagement = new BufferManager(); }
async processWithStreaming(request, onProgress, onComplete) { const strategy = this.selectStreamingStrategy(request);
switch (strategy.type) { case 'token_streaming': return await this.processTokenStreaming(request, onProgress, onComplete);
case 'chunk_streaming': return await this.processChunkStreaming(request, onProgress, onComplete);
case 'progressive_enhancement': return await this.processProgressiveEnhancement(request, onProgress, onComplete);
default: return await this.processFallback(request, onProgress, onComplete); } }
async processTokenStreaming(request, onProgress, onComplete) { const stream = await this.createTokenStream(request); let accumulatedResponse = ''; let tokenCount = 0;
try { for await (const token of stream) { accumulatedResponse += token; tokenCount++;
// Progressive processing of accumulated content const progressiveResult = await this.processProgressively( accumulatedResponse, tokenCount, request.context );
await onProgress({ token: token, accumulated: accumulatedResponse, processed: progressiveResult, progress: tokenCount / (request.estimatedTokens || 100) });
// Yield control periodically if (tokenCount % 10 === 0) { await this.yieldControl(); } }
const finalResult = await this.finalizeProcesing(accumulatedResponse, request); await onComplete(finalResult);
return finalResult; } catch (error) { console.error('Token streaming error:', error); throw error; } }
async processProgressively(content, tokenCount, context) { // Process content as it arrives for immediate feedback const partialResults = { summary: null, keyPoints: [], entities: [], sentiment: null };
// Generate summary for longer content if (tokenCount > 50) { partialResults.summary = await this.generatePartialSummary(content); }
// Extract entities as they appear if (tokenCount > 20) { partialResults.entities = await this.extractPartialEntities(content); }
// Analyze sentiment if (tokenCount > 30) { partialResults.sentiment = await this.analyzePartialSentiment(content); }
return partialResults; }
// Buffer management for smooth streaming class BufferManager { constructor() { this.buffers = new Map(); this.maxBufferSize = 1024 * 1024; // 1MB this.flushThreshold = 0.8; }
async addToBuffer(streamId, data) { if (!this.buffers.has(streamId)) { this.buffers.set(streamId, { data: [], size: 0, lastFlush: Date.now() }); }
const buffer = this.buffers.get(streamId); buffer.data.push(data); buffer.size += this.calculateDataSize(data);
// Auto-flush if buffer is getting full if (buffer.size > this.maxBufferSize * this.flushThreshold) { return await this.flushBuffer(streamId); }
return null; }
async flushBuffer(streamId) { const buffer = this.buffers.get(streamId); if (!buffer || buffer.data.length === 0) { return null; }
const flushedData = [...buffer.data]; buffer.data = []; buffer.size = 0; buffer.lastFlush = Date.now();
return flushedData; } }}Resource Management and Optimization
Section titled “Resource Management and Optimization”Implement intelligent resource management:
// AI Resource Managerclass AIResourceManager { constructor() { this.resourcePools = new Map(); this.loadBalancer = new LoadBalancer(); this.resourceMonitor = new ResourceMonitor(); }
async optimizeResourceUsage() { // Monitor current resource usage const usage = await this.resourceMonitor.getCurrentUsage();
// Optimize based on usage patterns const optimizations = await this.generateOptimizations(usage);
// Apply optimizations for (const optimization of optimizations) { await this.applyOptimization(optimization); }
return optimizations; }
async generateOptimizations(usage) { const optimizations = [];
// Memory optimizations if (usage.memory.percentage > 0.8) { optimizations.push({ type: 'memory_cleanup', priority: 'high', action: 'clear_unused_caches' }); }
// CPU optimizations if (usage.cpu.percentage > 0.9) { optimizations.push({ type: 'cpu_throttling', priority: 'medium', action: 'reduce_concurrent_operations' }); }
// Network optimizations if (usage.network.latency > 1000) { optimizations.push({ type: 'network_optimization', priority: 'medium', action: 'enable_request_batching' }); }
return optimizations; }
// Dynamic resource allocation async allocateResources(operationType, priority = 'normal') { const availableResources = await this.assessAvailableResources(); const requiredResources = this.getResourceRequirements(operationType);
if (this.canAllocate(availableResources, requiredResources)) { return await this.performAllocation(operationType, requiredResources); } else { // Try to free up resources await this.freeUpResources(requiredResources, priority); return await this.performAllocation(operationType, requiredResources); } }
async freeUpResources(needed, priority) { // Identify operations that can be paused or terminated const candidates = await this.identifyResourceCandidates(priority);
let freedResources = { memory: 0, cpu: 0, network: 0 };
for (const candidate of candidates) { if (this.hasEnoughResources(freedResources, needed)) { break; }
const freed = await this.terminateOrPauseOperation(candidate); freedResources.memory += freed.memory; freedResources.cpu += freed.cpu; freedResources.network += freed.network; }
return freedResources; }
// Load balancing for multiple AI operations class LoadBalancer { constructor() { this.operationQueue = []; this.activeOperations = new Map(); this.maxConcurrentOperations = 3; }
async balanceLoad(operations) { // Sort operations by priority and resource requirements const sortedOperations = this.sortOperationsByPriority(operations);
// Distribute operations across available resources const distribution = await this.distributeOperations(sortedOperations);
return distribution; }
async distributeOperations(operations) { const distribution = { immediate: [], queued: [], deferred: [] };
let currentLoad = await this.getCurrentLoad();
for (const operation of operations) { const projectedLoad = this.projectLoad(currentLoad, operation);
if (projectedLoad.acceptable) { distribution.immediate.push(operation); currentLoad = projectedLoad.newLoad; } else if (operation.priority === 'high') { distribution.queued.push(operation); } else { distribution.deferred.push(operation); } }
return distribution; } }}Network Optimization
Section titled “Network Optimization”Optimize network usage for AI operations:
// Network optimization for AI workflowsclass AINetworkOptimizer { constructor() { this.connectionPool = new ConnectionPool(); this.requestBatcher = new RequestBatcher(); this.compressionManager = new CompressionManager(); }
async optimizeNetworkRequests(requests) { // Analyze request patterns const analysis = await this.analyzeRequestPatterns(requests);
// Apply optimizations based on analysis const optimizedRequests = await this.applyNetworkOptimizations(requests, analysis);
return optimizedRequests; }
async applyNetworkOptimizations(requests, analysis) { let optimizedRequests = [...requests];
// Batch similar requests if (analysis.batchingOpportunities.length > 0) { optimizedRequests = await this.requestBatcher.batchRequests(optimizedRequests); }
// Compress large payloads if (analysis.compressionOpportunities.length > 0) { optimizedRequests = await this.compressionManager.compressRequests(optimizedRequests); }
// Optimize connection usage optimizedRequests = await this.connectionPool.optimizeConnections(optimizedRequests);
return optimizedRequests; }
// Request batching for efficiency class RequestBatcher { constructor() { this.batchWindow = 100; // 100ms batching window this.maxBatchSize = 10; this.pendingBatches = new Map(); }
async batchRequests(requests) { const batches = this.groupRequestsForBatching(requests); const batchedRequests = [];
for (const batch of batches) { if (batch.length > 1) { const batchedRequest = await this.createBatchRequest(batch); batchedRequests.push(batchedRequest); } else { batchedRequests.push(batch[0]); } }
return batchedRequests; }
groupRequestsForBatching(requests) { const groups = new Map();
for (const request of requests) { const batchKey = this.generateBatchKey(request);
if (!groups.has(batchKey)) { groups.set(batchKey, []); }
groups.get(batchKey).push(request); }
return Array.from(groups.values()); }
generateBatchKey(request) { // Group requests that can be batched together return `${request.endpoint}_${request.method}_${request.model || 'default'}`; }
async createBatchRequest(requests) { return { type: 'batch', endpoint: requests[0].endpoint, method: 'POST', body: { batch: requests.map(r => ({ id: r.id, body: r.body })) }, originalRequests: requests }; } }
// Connection pooling and reuse class ConnectionPool { constructor() { this.connections = new Map(); this.maxConnectionsPerHost = 6; this.connectionTimeout = 30000; }
async getConnection(host) { if (!this.connections.has(host)) { this.connections.set(host, { active: 0, pool: [], lastUsed: Date.now() }); }
const hostConnections = this.connections.get(host);
if (hostConnections.pool.length > 0) { return hostConnections.pool.pop(); }
if (hostConnections.active < this.maxConnectionsPerHost) { return await this.createNewConnection(host); }
// Wait for available connection return await this.waitForConnection(host); }
async releaseConnection(host, connection) { const hostConnections = this.connections.get(host);
if (hostConnections && connection.reusable) { hostConnections.pool.push(connection); hostConnections.lastUsed = Date.now(); } else { hostConnections.active--; } } }}User Experience Optimization
Section titled “User Experience Optimization”Optimize for perceived performance and user experience:
// UX-focused AI performance optimizerclass AIUXOptimizer { constructor() { this.feedbackManager = new FeedbackManager(); this.progressIndicators = new ProgressIndicatorManager(); this.interactionOptimizer = new InteractionOptimizer(); }
async optimizeUserExperience(operation, userContext) { // Provide immediate feedback await this.feedbackManager.provideImmediateFeedback(operation);
// Show appropriate progress indicators await this.progressIndicators.showProgress(operation, userContext);
// Optimize interaction patterns await this.interactionOptimizer.optimizeInteraction(operation, userContext);
return { feedbackStrategy: this.feedbackManager.getStrategy(), progressStrategy: this.progressIndicators.getStrategy(), interactionStrategy: this.interactionOptimizer.getStrategy() }; }
// Intelligent progress indication class ProgressIndicatorManager { constructor() { this.strategies = new Map(); this.estimationModels = new Map(); }
async showProgress(operation, userContext) { const strategy = await this.selectProgressStrategy(operation, userContext);
switch (strategy.type) { case 'determinate': return await this.showDeterminateProgress(operation, strategy);
case 'indeterminate': return await this.showIndeterminateProgress(operation, strategy);
case 'staged': return await this.showStagedProgress(operation, strategy);
case 'adaptive': return await this.showAdaptiveProgress(operation, strategy); } }
async selectProgressStrategy(operation, userContext) { // Analyze operation characteristics const canEstimate = await this.canEstimateProgress(operation); const hasStages = await this.hasDistinctStages(operation); const userPreference = userContext.progressPreference || 'auto';
if (canEstimate && userPreference !== 'simple') { return { type: 'determinate', showPercentage: true }; } else if (hasStages) { return { type: 'staged', showStageNames: true }; } else if (operation.estimatedDuration > 5000) { return { type: 'adaptive', showTimeEstimate: true }; } else { return { type: 'indeterminate', showSpinner: true }; } }
async showAdaptiveProgress(operation, strategy) { let estimatedDuration = operation.estimatedDuration || 5000; let startTime = Date.now();
const updateProgress = () => { const elapsed = Date.now() - startTime; const progress = Math.min(elapsed / estimatedDuration, 0.95); // Never show 100% until complete
// Adjust estimate based on actual progress if (elapsed > estimatedDuration * 0.8) { estimatedDuration = elapsed / 0.8; // Extend estimate }
this.updateProgressUI({ progress: progress, timeRemaining: Math.max(0, estimatedDuration - elapsed), message: this.getProgressMessage(progress, operation) }); };
const progressInterval = setInterval(updateProgress, 500);
// Clean up when operation completes operation.onComplete(() => { clearInterval(progressInterval); this.showCompletionFeedback(); }); } }
// Interaction optimization class InteractionOptimizer { constructor() { this.interactionPatterns = new Map(); this.responseStrategies = new Map(); }
async optimizeInteraction(operation, userContext) { // Analyze user interaction patterns const patterns = await this.analyzeInteractionPatterns(userContext);
// Optimize response timing const responseStrategy = await this.optimizeResponseTiming(operation, patterns);
// Implement progressive disclosure const disclosureStrategy = await this.implementProgressiveDisclosure(operation, patterns);
return { responseStrategy, disclosureStrategy, interactionEnhancements: await this.getInteractionEnhancements(patterns) }; }
async optimizeResponseTiming(operation, patterns) { // Provide immediate acknowledgment await this.provideImmediateAcknowledgment(operation);
// Stream partial results if possible if (operation.supportsStreaming) { await this.enableProgressiveResults(operation); }
// Provide intermediate updates await this.scheduleIntermediateUpdates(operation, patterns.attentionSpan);
return { acknowledgmentDelay: 0, streamingEnabled: operation.supportsStreaming, updateInterval: this.calculateOptimalUpdateInterval(patterns) }; } }}This comprehensive performance optimization framework ensures that AI workflows in browser environments deliver the best possible user experience while efficiently managing system resources.