Skip to content

Extract Data from Any Website

Master a reliable, universal approach to extracting data from any website. This guide teaches you the core method that works across different site structures and technologies.

⏱️ Time: 30 minutes 🎯 Difficulty: Intermediate ✅ Result: Universal data extraction workflow you can adapt to any site

Every successful web extraction follows the same pattern, regardless of the website:

flowchart TD
    A[🎯 Identify Target Data] --> B[🔍 Analyze Page Structure]
    B --> C[🌐 Extract Raw Content]
    C --> D[✂️ Filter & Clean Data]
    D --> E[📊 Structure Output]
    E --> F[💾 Save Results]

    style A fill:#e3f2fd
    style B fill:#e8f5e8
    style C fill:#fff3e0
    style D fill:#f3e5f5
    style E fill:#f9fbe7
    style F fill:#fce4ec

Before building any workflow, spend 5 minutes understanding what you’re extracting:

Look for consistent elements:

  • Product names in <h1> tags
  • Prices in elements with class price
  • Descriptions in <p> tags with specific classes
  • Images in predictable locations

Example Analysis:

Target: E-commerce product pages
Data needed: Name, price, description, image URL
Pattern: All products follow same HTML structure

Test these scenarios:

  • Does content load immediately or after page load?
  • Are there “Load More” buttons or infinite scroll?
  • Does JavaScript modify the content after loading?

Quick Test: Disable JavaScript in your browser - if content disappears, it’s dynamic.

Use this proven 4-node pattern that works for 90% of extraction tasks:

  1. Get All Text From Link - Captures page content
  2. Edit Fields - Extracts and cleans specific data
  3. Filter - Removes unwanted results
  4. Download as File - Saves structured data

Get All Text From Link:

{
"waitForLoad": true,
"timeout": 20000,
"textFilters": [
".navigation",
".footer",
".sidebar",
".advertisement"
]
}

Edit Fields for Data Extraction:

{
"operations": [
{
"field": "text",
"operation": "extract_regex",
"pattern": "Product Name: ([^\\n]+)",
"output_field": "product_name"
},
{
"field": "text",
"operation": "extract_regex",
"pattern": "\\$([0-9,]+\\.?[0-9]*)",
"output_field": "price"
}
]
}

Problem: Content loads after page renders Solution: Increase timeout and enable JavaScript waiting

{
"waitForLoad": true,
"timeout": 30000,
"waitForSelector": ".product-info",
"dynamicContent": true
}

Problem: Site blocks automated access Solution: Add realistic delays and headers

{
"requestDelay": 2000,
"userAgent": "Mozilla/5.0 (compatible browser string)",
"respectRobotsTxt": true
}

Problem: Data appears in different formats across pages Solution: Use multiple extraction patterns

{
"operations": [
{
"field": "text",
"operation": "extract_regex",
"pattern": "Price: \\$([0-9,]+\\.?[0-9]*)",
"output_field": "price_format1"
},
{
"field": "text",
"operation": "extract_regex",
"pattern": "\\$([0-9,]+\\.?[0-9]*)",
"output_field": "price_format2"
},
{
"field": "price_format1,price_format2",
"operation": "coalesce",
"output_field": "final_price"
}
]
}

URL List Processing:

{
"urls": [
"https://example.com/product1",
"https://example.com/product2",
"https://example.com/product3"
],
"batch_size": 5,
"delay_between_batches": 3000
}

Auto-Discovery Pattern:

{
"pagination": {
"next_button_selector": ".next-page",
"max_pages": 50,
"stop_condition": "no_new_data"
}
}

Target: Job board with consistent structure Data: Title, company, salary, location, description

Extraction Pattern:

{
"operations": [
{
"field": "text",
"operation": "extract_regex",
"pattern": "Job Title: ([^\\n]+)",
"output_field": "title"
},
{
"field": "text",
"operation": "extract_regex",
"pattern": "Company: ([^\\n]+)",
"output_field": "company"
},
{
"field": "text",
"operation": "extract_regex",
"pattern": "Salary: \\$([0-9,]+)",
"output_field": "salary"
}
]
}

Target: Property listings with images and details Data: Price, bedrooms, bathrooms, square footage, address

Multi-Pattern Extraction:

{
"operations": [
{
"field": "text",
"operation": "extract_regex",
"pattern": "\\$([0-9,]+)",
"output_field": "price"
},
{
"field": "text",
"operation": "extract_regex",
"pattern": "([0-9]+) bed",
"output_field": "bedrooms"
},
{
"field": "text",
"operation": "extract_regex",
"pattern": "([0-9,]+) sq ft",
"output_field": "square_feet"
}
]
}
IssueSymptomsSolution
No data extractedEmpty results or null valuesCheck if site requires JavaScript, increase timeout
Partial data onlySome fields missingVerify regex patterns match actual content format
Blocked requests403/429 errorsAdd delays, rotate user agents, respect rate limits
Inconsistent resultsData varies between runsHandle dynamic content, add wait conditions
Performance issuesSlow extractionOptimize filters, reduce timeout, batch processing
  1. Test with single URL first - Verify pattern works
  2. Check raw extracted text - Ensure content is captured
  3. Validate regex patterns - Use online regex testers
  4. Monitor for errors - Check browser console for blocks
  5. Optimize gradually - Add complexity only when needed
flowchart LR
    A[Product URL] --> B[Get All Text]
    B --> C[Extract: Name, Price, Description]
    C --> D[Clean & Format]
    D --> E[CSV Output]

    style A fill:#e3f2fd
    style B fill:#e8f5e8
    style C fill:#fff3e0
    style D fill:#f3e5f5
    style E fill:#fce4ec
flowchart TD
    A[URL List] --> B[Site A Extraction]
    A --> C[Site B Extraction]
    A --> D[Site C Extraction]
    B --> E[Merge Results]
    C --> E
    D --> E
    E --> F[Comparison Report]

    style A fill:#e3f2fd
    style E fill:#fff3e0
    style F fill:#fce4ec
  • Filter early: Remove unnecessary content before processing
  • Batch requests: Process multiple URLs efficiently
  • Cache results: Avoid re-extracting unchanged data
  • Monitor resources: Track memory and processing time
  • Handle errors gracefully: Plan for failed extractions
  • Validate data quality: Check for expected formats
  • Respect site policies: Follow robots.txt and terms of service
  • Monitor for changes: Sites update their structure regularly
  • Respect rate limits: Don’t overwhelm target servers
  • Check legal compliance: Ensure extraction is permitted
  • Protect privacy: Handle personal data appropriately
  • Give attribution: Credit data sources when required

For sites that heavily rely on JavaScript:

{
"browser_automation": true,
"wait_for_element": ".dynamic-content",
"execute_javascript": "window.scrollTo(0, document.body.scrollHeight)",
"screenshot_before_extract": true
}

Sometimes extraction reveals hidden APIs:

  1. Monitor network requests during manual browsing
  2. Look for JSON endpoints that provide structured data
  3. Use API endpoints instead of HTML extraction when available

Master these related techniques:

{
"workflow": {
"name": "Universal Data Extractor",
"description": "Adaptable workflow for any website",
"nodes": [
{
"type": "LambdaInput",
"config": {
"urls": ["https://example.com/page1", "https://example.com/page2"]
}
},
{
"type": "GetAllTextFromLink",
"config": {
"waitForLoad": true,
"timeout": 20000,
"textFilters": [".navigation", ".footer", ".ads"]
}
},
{
"type": "EditFields",
"config": {
"operations": [
{
"field": "text",
"operation": "extract_regex",
"pattern": "Title: ([^\\n]+)",
"output_field": "title"
},
{
"field": "text",
"operation": "extract_regex",
"pattern": "Price: \\$([0-9,]+\\.?[0-9]*)",
"output_field": "price"
}
]
}
},
{
"type": "Filter",
"config": {
"conditions": [
{"field": "title", "operation": "not_empty"},
{"field": "price", "operation": "not_empty"}
]
}
},
{
"type": "DownloadAsFile",
"config": {
"format": "csv",
"filename": "extracted_data_{{timestamp}}.csv"
}
}
]
}
}

💡 Pro Tip: Start simple with one data field, then gradually add complexity. The universal method works because it’s systematic, not because it’s complex.