Performance & Speed Issues
Performance & Speed Issues
Section titled “Performance & Speed Issues”Slow workflows can be frustrating and may cause timeouts or browser crashes. This guide helps you identify performance bottlenecks and optimize workflow execution speed.
⚡ Quick Performance Fixes
Section titled “⚡ Quick Performance Fixes”Try these first:
- 🚀 Close unnecessary browser tabs - Reduces memory pressure
- 🚀 Restart your browser - Clears memory leaks and resets performance
- 🚀 Update your browser - Latest versions have performance improvements
- 🚀 Disable other extensions - Reduces resource competition
- 🚀 Check available RAM - Ensure sufficient system memory
🐌 Common Performance Problems
Section titled “🐌 Common Performance Problems”Slow Content Extraction
Section titled “Slow Content Extraction”Large Page Content
Section titled “Large Page Content”Symptoms:
- Workflows take minutes to extract simple data
- Browser becomes unresponsive during extraction
- “Page unresponsive” warnings appear
Performance comparison:
| Content Size | Extraction Time | Memory Usage | Recommended Action |
|---|---|---|---|
| < 1MB | < 2 seconds | Low | No optimization needed |
| 1-5MB | 2-10 seconds | Medium | Use CSS selectors |
| 5-20MB | 10-30 seconds | High | Extract in chunks |
| > 20MB | > 30 seconds | Very High | Limit extraction scope |
Optimization strategies:
// Instead of extracting all contentconst allText = document.body.innerText; // Slow for large pages
// Use targeted selectorsconst specificContent = document.querySelectorAll('.article-content p');const limitedContent = Array.from(specificContent) .slice(0, 50) // Limit to first 50 paragraphs .map(p => p.textContent);Multiple Extraction Operations
Section titled “Multiple Extraction Operations”Problem: Running many extraction nodes simultaneously
Solution - Sequential Processing:
graph LR
A[Page Load] --> B[Extract Headers]
B --> C[Extract Content]
C --> D[Extract Links]
D --> E[Process Results]
style A fill:#e3f2fd
style B fill:#e8f5e8
style C fill:#e8f5e8
style D fill:#e8f5e8
style E fill:#f3e5f5
Optimization techniques:
| Approach | Speed | Memory | Best For |
|---|---|---|---|
| Single extraction | Fastest | Lowest | Simple data |
| Batched extraction | Medium | Medium | Multiple similar elements |
| Parallel extraction | Variable | Highest | Independent data sources |
| Streaming extraction | Consistent | Low | Large datasets |
AI Processing Bottlenecks
Section titled “AI Processing Bottlenecks”Slow AI Analysis
Section titled “Slow AI Analysis”Common causes:
- Large input text sent to AI models
- Complex prompts requiring extensive processing
- Multiple AI calls in sequence
- Using slower AI models
Optimization strategies:
| Problem | Cause | Solution |
|---|---|---|
| Large text input | Sending entire page content | Summarize or chunk text first |
| Complex prompts | Overly detailed instructions | Simplify and focus prompts |
| Sequential AI calls | Waiting for each response | Batch similar requests |
| Slow model choice | Using most capable but slowest model | Use faster models for simple tasks |
Text chunking example:
// Instead of processing entire articleconst fullArticle = document.querySelector('.article').textContent; // 10,000+ words
// Chunk into manageable piecesfunction chunkText(text, maxWords = 500) { const words = text.split(' '); const chunks = [];
for (let i = 0; i < words.length; i += maxWords) { chunks.push(words.slice(i, i + maxWords).join(' ')); }
return chunks;}
const chunks = chunkText(fullArticle, 300); // Process 300 words at a timeBrowser Resource Issues
Section titled “Browser Resource Issues”Memory Consumption
Section titled “Memory Consumption”Symptoms:
- Browser becomes sluggish during workflow execution
- “Out of memory” errors
- System becomes unresponsive
Memory monitoring:
// Check memory usage (Chrome only)if (performance.memory) { const memInfo = { used: Math.round(performance.memory.usedJSHeapSize / 1024 / 1024) + ' MB', total: Math.round(performance.memory.totalJSHeapSize / 1024 / 1024) + ' MB', limit: Math.round(performance.memory.jsHeapSizeLimit / 1024 / 1024) + ' MB' }; console.log('Memory usage:', memInfo);}Memory optimization:
| Technique | Impact | Implementation |
|---|---|---|
| Clear variables | Medium | Set large objects to null after use |
| Limit DOM queries | High | Cache DOM elements, avoid repeated queries |
| Process in batches | High | Break large operations into smaller chunks |
| Use streaming | Very High | Process data as it arrives, don’t store all |
CPU Intensive Operations
Section titled “CPU Intensive Operations”Symptoms:
- High CPU usage during workflow execution
- Browser UI becomes unresponsive
- Fan noise increases significantly
CPU optimization techniques:
// Use requestAnimationFrame for heavy processingfunction processLargeDataset(data, callback) { let index = 0; const batchSize = 100;
function processBatch() { const endIndex = Math.min(index + batchSize, data.length);
// Process batch for (let i = index; i < endIndex; i++) { // Process data[i] }
index = endIndex;
if (index < data.length) { // Continue processing in next frame requestAnimationFrame(processBatch); } else { // Processing complete callback(); } }
processBatch();}🔧 Performance Diagnostic Tools
Section titled “🔧 Performance Diagnostic Tools”Workflow Timing Analysis
Section titled “Workflow Timing Analysis”Add timing measurements:
// Measure individual node performanceconst nodeTimings = {};
function measureNode(nodeName, operation) { const startTime = performance.now();
const result = operation();
const endTime = performance.now(); nodeTimings[nodeName] = endTime - startTime;
console.log(`${nodeName} took ${endTime - startTime}ms`); return result;}
// Usage exampleconst extractedData = measureNode('ContentExtraction', () => { return document.querySelectorAll('.content p');});Browser Performance Monitoring
Section titled “Browser Performance Monitoring”Performance API usage:
// Monitor overall workflow performanceperformance.mark('workflow-start');
// ... workflow execution ...
performance.mark('workflow-end');performance.measure('workflow-duration', 'workflow-start', 'workflow-end');
// Get measurementsconst measures = performance.getEntriesByType('measure');measures.forEach(measure => { console.log(`${measure.name}: ${measure.duration}ms`);});Resource Usage Tracking
Section titled “Resource Usage Tracking”Monitor resource consumption:
// Track resource usage over timeconst resourceMonitor = { startTime: Date.now(), measurements: [],
measure() { const now = Date.now(); const measurement = { timestamp: now - this.startTime, memory: performance.memory ? { used: performance.memory.usedJSHeapSize, total: performance.memory.totalJSHeapSize } : null, timing: performance.now() };
this.measurements.push(measurement); return measurement; },
report() { console.table(this.measurements); }};
// Use during workflowresourceMonitor.measure(); // Before workflow// ... workflow execution ...resourceMonitor.measure(); // After workflowresourceMonitor.report();🎯 Optimization Strategies
Section titled “🎯 Optimization Strategies”Content Extraction Optimization
Section titled “Content Extraction Optimization”Smart Selector Usage
Section titled “Smart Selector Usage”Efficient selectors:
// Slow - searches entire documentconst slowQuery = document.querySelectorAll('*');
// Fast - specific and targetedconst fastQuery = document.querySelectorAll('.article-content p');
// Faster - use IDs when availableconst fastestQuery = document.getElementById('main-content');Selector performance ranking:
- 🟢 ID selectors (
#content) - Fastest - 🟡 Class selectors (
.article) - Fast - 🟡 Tag selectors (
p,div) - Medium - 🟠 Attribute selectors (
[data-id]) - Slower - 🔴 Complex selectors (
div > p:nth-child(2)) - Slowest
Batch Processing
Section titled “Batch Processing”Process data in chunks:
// Instead of processing all at oncefunction processAllData(data) { return data.map(item => expensiveOperation(item)); // Blocks browser}
// Process in batches with delaysasync function processBatched(data, batchSize = 50) { const results = [];
for (let i = 0; i < data.length; i += batchSize) { const batch = data.slice(i, i + batchSize); const batchResults = batch.map(item => expensiveOperation(item)); results.push(...batchResults);
// Allow browser to update UI await new Promise(resolve => setTimeout(resolve, 10)); }
return results;}AI Processing Optimization
Section titled “AI Processing Optimization”Prompt Optimization
Section titled “Prompt Optimization”Efficient prompts:
// Slow - overly complex promptconst slowPrompt = `Please analyze this text in great detail, considering all possible interpretations,cultural contexts, linguistic nuances, and provide a comprehensive analysisincluding sentiment, themes, key points, and recommendations...`;
// Fast - focused and specificconst fastPrompt = `Extract the main topic and sentiment (positive/negative/neutral) from this text:`;Model Selection
Section titled “Model Selection”Choose appropriate models:
| Task Type | Recommended Model | Speed | Accuracy |
|---|---|---|---|
| Simple classification | Fast/Small models | Very Fast | Good |
| Text summarization | Medium models | Fast | Very Good |
| Complex analysis | Large models | Slow | Excellent |
| Code generation | Specialized models | Medium | Excellent |
Workflow Architecture Optimization
Section titled “Workflow Architecture Optimization”Parallel vs Sequential Processing
Section titled “Parallel vs Sequential Processing”Sequential (slower but safer):
graph LR
A[Extract Text] --> B[Process Text]
B --> C[Analyze Sentiment]
C --> D[Generate Summary]
D --> E[Save Results]
Parallel (faster but more complex):
graph TB
A[Extract Text] --> B[Process Text]
B --> C[Analyze Sentiment]
B --> D[Generate Summary]
B --> E[Extract Keywords]
C --> F[Combine Results]
D --> F
E --> F
F --> G[Save Results]
Caching Strategies
Section titled “Caching Strategies”Implement smart caching:
// Cache expensive operationsconst cache = new Map();
function cachedOperation(input) { const cacheKey = JSON.stringify(input);
if (cache.has(cacheKey)) { console.log('Cache hit'); return cache.get(cacheKey); }
console.log('Cache miss - computing...'); const result = expensiveOperation(input); cache.set(cacheKey, result);
return result;}📊 Performance Benchmarking
Section titled “📊 Performance Benchmarking”Workflow Performance Targets
Section titled “Workflow Performance Targets”Acceptable performance ranges:
| Operation Type | Target Time | Warning Threshold | Action Required |
|---|---|---|---|
| Simple extraction | < 2 seconds | > 5 seconds | Optimize selectors |
| Complex extraction | < 10 seconds | > 30 seconds | Reduce scope |
| AI processing | < 15 seconds | > 60 seconds | Optimize prompts |
| Data transformation | < 5 seconds | > 20 seconds | Batch processing |
| File operations | < 3 seconds | > 10 seconds | Check file size |
Performance Testing
Section titled “Performance Testing”Create performance tests:
// Performance test suiteconst performanceTests = { async testExtraction() { const start = performance.now(); const data = document.querySelectorAll('.test-content'); const end = performance.now();
return { operation: 'Content Extraction', duration: end - start, dataSize: data.length, passed: (end - start) < 2000 // 2 second threshold }; },
async testProcessing(data) { const start = performance.now(); const processed = data.map(item => item.textContent.trim()); const end = performance.now();
return { operation: 'Data Processing', duration: end - start, itemCount: processed.length, passed: (end - start) < 5000 // 5 second threshold }; }};
// Run performance testsasync function runPerformanceTests() { const results = [];
results.push(await performanceTests.testExtraction()); // Add more tests...
console.table(results); return results;}🚨 Performance Warning Signs
Section titled “🚨 Performance Warning Signs”Early Warning Indicators
Section titled “Early Warning Indicators”Watch for these signs:
- ⚠️ Extraction taking > 10 seconds - Content too large or selectors inefficient
- ⚠️ Memory usage > 500MB - Potential memory leak or excessive data storage
- ⚠️ CPU usage > 80% - Processing too intensive, needs optimization
- ⚠️ Browser becoming unresponsive - Operations blocking UI thread
- ⚠️ Frequent timeouts - Network issues or processing bottlenecks
Performance Degradation Patterns
Section titled “Performance Degradation Patterns”Common degradation causes:
| Pattern | Cause | Solution |
|---|---|---|
| Gradual slowdown | Memory leaks | Restart browser, optimize memory usage |
| Sudden performance drop | Resource exhaustion | Reduce batch sizes, add delays |
| Inconsistent timing | Network variability | Add retry logic, optimize requests |
| Progressive failure | Accumulating errors | Implement error recovery, reset state |
🔄 Ongoing Performance Maintenance
Section titled “🔄 Ongoing Performance Maintenance”Regular Performance Monitoring
Section titled “Regular Performance Monitoring”Monthly checklist:
Performance Optimization Workflow
Section titled “Performance Optimization Workflow”Systematic optimization process:
- Identify bottlenecks - Use timing and profiling tools
- Prioritize improvements - Focus on biggest impact first
- Implement optimizations - Make targeted changes
- Test and validate - Ensure improvements work
- Monitor results - Track performance over time
Best Practices for Fast Workflows
Section titled “Best Practices for Fast Workflows”Design principles:
- 🎯 Be specific - Use targeted selectors and focused operations
- 🔄 Process incrementally - Break large operations into smaller chunks
- 💾 Cache intelligently - Store expensive computation results
- ⚡ Optimize early - Consider performance from the start
- 📊 Measure everything - Track performance metrics consistently